报告题目:Robust Iterative Solvers Based on Machine Learning
报告人: 张晨松 副研究员
报告人单位:中国科学院数学与系统科学研究院
时间: 2021年5月19日15:00-16:00
地点:教2-314
主办单位:bat365在线官网入口
报告内容:Linear systems arising from coupled PDEs in multiphysics applications could cause robustness problems for iterative methods. Solving large-scale linear algebraic systems in an efficient and robust manner is a dream for many computational scientists who work on practical engineering applications. In this talk, we review old and new techniques for improving the robustness of iterative solvers for large-scale sparse linear equations. In particular, we will discuss methods based on machine learning to select solver components automatically to improve overall simulation performance. Based on this algorithm selection model, a self-adaptive procedure can be derived to improve the robustness of iterative solvers.
This work was partially supported by Science Challenge Project TZZT2019-B1.
报告人简介:张晨松,1999年获南京大学计算数学硕士学位,2007年获得美国马里兰大学应用数学博士学位,此后在宾州州立大学数学系从事博士后研究工作,于2011年进入中国科学院数学与系统科学研究院计算数学所,任副研究员。主要研究兴趣:自适应有限元方法、多层迭代法及其在流固耦合、油藏模拟等问题中的应用。2012年在第二十一届国际区域分解法会议(法国)做大会特邀报告,2013年在第16届全国流体力学数值方法会议做大会特邀报告。曾在Handbook of Numerical Analysis、Numer Math、SINUM、MMS、M3AS、JCP等国际一流期刊发表了多篇学术论文。